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According to quantum free electron theory:

O The energy values of the free electrons are discontinuous because of which their energy values are
discrete.

O The free clectrons obey the Pauli’s exclusion principle. Hence no two electrons can possess same
energy.

O The distribution of energy among the free electrons is according to Fermi- Dirac statistics, which
imposes a severe restriction on the possible ways in which the electrons absorb energy from an external

source.

Basics of Quantum Theory

de-Broglie Wave Concepts

= The universe is made of Radiation (light) and matter (Particles).The light exhibits the dual nature i.e. it
can behave both as a wave and as a particle. The phenomena of diffraction and interference can only be
explained with the concept that light travels in the form of waves. The phenomena of photoelectric
effect, Compton effect and black body radiation can only be explained with the concept of quantum
theory of light. It means to say that light possesses particle nature. Hence, it is concluded that light
exhibits the dual nature namely wave nature and particle nature.

= Since the nature loves symmetry was suggested by Louis deBroglie. de Broglie suggested that an
electron or any other material particle must exhibit wave like properties in addition to particle nature.
The waves associated with a moving material particle are called matter waves, pilot waves or de

Broglie waves.

De-Broglie Wavelength

O de-Broglie formulated an equation relating the momentum (p) of the electron and the wavelength
(M) associated with it, called de-Broglie wave equation.

o A = h/mv=h/p where h - is the planck’s constant.

Relation between de-Broglie Wavelength and Energy

Consider an electron with charge e, mass m and velocity v is under the influence of an electric potential V.

The energy acquired by electron is given by,

2
E=eV=lmv2=p— (D)
2 2m



Here p is the momentum of the electron. From (1), we can write

p =2meV =2mE )

The expression for de-Broglie wavelength is given by,

,1=£ h h h

mv_;_ \2meV - \V2mE

3)

Wave Function

% A variable quantity which characterizes de-Broglie waves is known as Wave function and is

denoted by the symbol .

% The value of the wave function associated with a moving particle at a point (x, y, z) and at a time

‘t’ gives the probability of finding the particle at that time and at that point.

Physical significance of @Y

>

The wave function { enables all possible information about the particle. P is a complex
quantity and has no direct physical meaning. It is only a mathematical tool in order to
represent the variable physical quantities in quantum mechanics.

Born suggested that, the value of wave function associated with a moving particle at the
position co-ordinates (x,y,z) in space, and at the time instant ‘¢’ is related in finding the particle
at certain location and certain period of time ‘t’.

If ¢ represents the probability of finding the particle, then it can have two cases.

Case 1: certainty of its Presence: +ve probability

Case 2: certainty of its absence: - ve probability, but —ve probability is meaningless.

Hence the wave function { is complex number and is of the form a+ib

Even though { has no physical meaning, the square of its absolute magnitude I\pI*> gives a
definite meaning and is obtained by multiplying the complex number with its complex
conjugate then Iysl* represents the probability density ‘P’ of locating the particle at a place at a
given instant of time. And has real and positive solutions.

Y (xyzt)=a+ib

YHxyzt)=a—ib

P= Yy=\Y\’=+0 as ’=—1

where ‘P’ is called the probability density of the wave function.

If the particle is moving in a volume ‘V’, then the probability of finding the particle in a



volume element dv, surrounding the point x,y,z and at instant ‘¢’ is Pdv
[[WiPdv=1 if particle is present
[[W2ldv = 0 if particle does not exist

This is called normalization condition.

Schrodinger Wave Equations

O Schrodinger describes the wave nature of a particle in mathematical form and is known as
Schrodinger wave equation. Schrodinger wave equation plays the role of Newton’s laws and
conservation of energy in classical mechanics i.e. it predicts the future behavior of a dynamic
system. It is a wave equation in terms of wave function which predicts analytically and preciously
the probability of events or outcomes. Schrodinger wave equation are of two types:

1. Time dependent wave equation and

2. Time independent wave equation.
To obtain these two equations, Schrddinger connected the expression of de-Broglie wavelength into
classical wave equation for a moving particle. The obtained equations are applicable for both

microscopic and macroscopic particles.

Schrodinger Time Dependent Wave Equation

To explain the wave function, let us consider a particle of mass m moving along the positive x-direction
having accurately known momentum p and total energy E. The position of the particle is completely

undetermined.

Let wave associated with such a particle be a plane, continuous harmonic wave travelling in the positive x-

direction. The wavelength of the wave is

aoh_h
mv p
.‘.p:ﬁzi.z—”=hk
A 2 A
where
po 2w
27 A

Now,



E=ho =i.27w=ha),

27

or

E
w=—
h

wherew = 270

Let the plane wave be represented by a complex variable quantity Y called the wave function of the

particle and is given by

\P — Aei(kx—wt)
. 27
Putting w=2rv and k = o
. 2mx . x
l// _ Aez(T—Zﬂut) _ e—Zm(w—Z)
h
As E=hv=27zv and A=—
p
or E =2V
7]

Therefore, for a free particle wave equation becomes

Differentiate equation (3) w.r.t. £, we get

oy — _iEAe_?i(Etfpx)
ot fi
EAe%(EFPX) = _ﬁﬁ_l//
i Ot
. OW
= Fy=ih—
T

Differentiate equation (3) w.r.t. x, we get

0 i L Er-px)
Y _ ¥ o Aen

ox h
i Ox
0
=Dy = —.—l//
i Ox

As total energy, E= Kinetic energy (K) +Potential energy (V)

ey

2)

3)

“4)

)



2

Now, Kinetic Energy = £—
2m

Equation (5) in terms of wave function { can be written as,

2

El//:(é) jl//+V!// (6)

2m
Putting the values of Ew and py from (4) and (5), we have

2
w1 Ly,

ot i Ox 2m
L0y R oy

- = +V 7
: ot 2m ox* v 0

Equation (7) is called Schrddinger time dependent wave equation in one-dimension. The
Schrédinger time dependent wave equation in three-dimensional form is written as,

2 2 2 2
n ¥ I a“z’+5‘/2’+a“2’ +Vy (8)
ot 2m| Oox~ 0Oy° 0Oz
2
or iha—lﬂ:—h—vzl//+Vl// ©))
ot 2m
*)/\ A A 2 2 2
wv=i 245000 ana vy OO
ox "oy 0z ' oy oz
s . Oy
or —%V +V l//:lhE (10)

Equation (10) contains time and hence is called time dependent Schrodinger wave equation.

2

The operator (— ;—Vz + Vj is called Hamiltonian and is represented by H.
m

Schrodinger Time Independent Wave Equation
Again consider equation (3), the we have

_—I(Et—px) .y pr

Y = Ae” =Ae" e

gy

or Y=ye" (11)



Where W, = Aer”
Differentiate (11) partially w.r.t. £, we get

v —Et//oe;a (12)

o h
Differentiate (11) partially w.r.t. x twice, we get

O’y 82‘//0 %Et
ox*  ox’ (13)
2 2
Putting equations (11), (12) and (13) in equation (7) iha—w = —h— 0 !'/2/ +Vy , we get
ot 2m Ox
E e n* o'y, - —E
ih —— = e +Vye"
( jl//o om axz Yo
n* o'y,
l//() 2m ze l//o
o’w, 2m
or ax; +?(E—V)u/o =0 (14)
This is time independent Schrodinger wave equation in one-dimension.
In three-dimensional, it will be of the form as
2m
V2W0+?(E—V)wo =0 (15)

2 2 2
where, {VZ = o + o + ;;} is called the Laplacian operator.
X <



Particle in one dimensional Box

>

The wave nature of a moving particle leads to some remarkable consequences when the
particle is restricted to a certain region of space instead of being able to move freely i.e.
when a particle bounces back and forth between the walls of a box.

The Schrodinger wave equation will be applied to study the motion of a particle in 1-D box
to show how quantum numbers, discrete values of energy and zero point energy arise.

From wave point of view, a particle trapped in a box is like a standing wave in a

string stretched between the box’s walls.

Consider a particle of mass ‘m’ moving freely along x- axis and is confined between x=0
and x= L by infinitely two hard walls, so that the particle has no chance of penetrating them
and bouncing back and forth between the walls of a 1-D box.

If the particle does not lose energy when it collides with such walls, then the total

energy remains constant.

V= <o V= 0o

4 Box A

— 00 V= oo

xY

Particle



» This box can be represented by a potential well of width ‘L’, where V is uniform inside the
box throughout the length ‘L’ i.e V= 0 inside the box or convenience and with potential
walls of infinite height at x=0 and x=L, so that the P.E. ‘V’ of a particle is infinitely high
V=00 on both sides of the box.

Boundary Conditions

The boundary conditions are

V(x)=0 ,y¥(x)=1 when O<x<L (D)

V(x)=0 ,ip(x)=0 when 0>x>1 2)
Where 1(x) is the wave function and it gives the probability of finding the particle inside the box.

The Schrodinger wave equation for the particle in the potential well can be written as

v 2
G?'Fh—’:l(E—V)l// :0

As V=0 for a free particle, above equation reduces to,

o 2
l//2 +87r2m Ey =0
Ox h (3)

In the simplest form equation (3) can be written as
82
VZ +k'w =0
ox (4)

Where k is the propagation constant and is give by

2
k= Y4 ZnE
\ & )

The general solution of equation (4) is

w(x) = Asin kx+ Bcos kx
(6)

Where A and B are arbitrary constants and value of these constants can be obtained by applying the
boundary conditions. Substituting equation (1) in (6), we get



0=Asin k(0)+ Bcosk(0)= B=0
Putting B=0 in (6)

w(x) = Asin kx
(7

Substituting equation (2) in (7), we get

0= Asin k(L)

= A=00rsin kL=0
But

A#0
As already B=0, and if A=0, there is no solution at all. Therefore,

sin kL=0

lekL=nrx

. (8)
where n=1,2,3,4,........ . and so on.
But

nz0

Because if n=0, k=0, E=0 everywhere inside the box and moving particle can not have zero energy.

From (8)
(2]
L
From (5)
nr) B 87°mE
Tj e
Ee n’h’
8ml’ 9)

Zero point energy
The lowest energy of the particle is given by putting n= 1 in equation (9) i.e.

h2
E = 5
&mL (10)




Eo = 0 is not allowed. The particle can never be at rest. The lowest energy is E;. This is the minimum
energy that the particle will be having in its lowest state or ground state. This is also called Ground state
energy or Zero point energy of the system. Other levels are called excited states.

We can write

E, =n’E,

n



9m’h® | n:=:3
2ml2
an’R? | n=2
2ml2
omL2? |
b -
iEnergy
- 25 E,
= 16 £,
n=3 9k,
n=2 4 E,
n=1




The wave functions 1, corresponding to E, are called Eigen functions of the particle. The integer ‘n’

corresponding to energy E, are quantum number of the energy level E,. Putting (8) in (7),

According to the normalization condition, the total probability of finding the particle somewhere inside
the box must be unity.

L 2

Ipxdx:j‘|l//n| dx =1
0

0

(12)
From (11) and (12),

The second term of the integrand expression becomes zero at both the limits. So,

(4] 1 =1

AP==
L

-f
L (13)

Hence, the normalized wave function is

(14)



The plots below show 1, versus x and | 1, I? versus x for n=1, 2, and 3etc. Note that although 1, can be
positive or negative, | Y |I* is always positive.

| 1 I?is zero at the boundaries, satisfying our boundary conditions. In addition, | 1, I*is zero at other
points. The number of zero points depends on the quantum number n. Only certain wavelengths for

particle are allowed.

P(x)

n=35 S iy e mmey s
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