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According to quantum free electron theory:  

 The energy values of the free electrons are discontinuous because of which their energy values are 

discrete.  

 The free electrons obey the Pauli’s exclusion principle. Hence no two electrons can possess same 

energy.  

 The distribution of energy among the free electrons is according to Fermi- Dirac statistics, which 

imposes a severe restriction on the possible ways in which the electrons absorb energy from an external 

source.  

 

Basics of Quantum Theory 
de-Broglie Wave Concepts 

 
 The universe is made of Radiation (light) and matter (Particles).The light exhibits the dual nature i.e. it 

can behave both as a wave and as a particle. The phenomena of diffraction and interference can only be 

explained with the concept that light travels in the form of waves. The phenomena of photoelectric 

effect, Compton effect and black body radiation can only be explained with the concept of quantum 

theory of light. It means to say that light possesses particle nature. Hence, it is concluded that light 

exhibits the dual nature namely wave nature and particle nature. 

 Since the nature loves symmetry was suggested by Louis deBroglie. de Broglie suggested that an 

electron or any other material particle must exhibit wave like properties in addition to particle nature. 

The waves associated with a moving material particle are called matter waves, pilot waves or de 

Broglie waves.  

 

De-Broglie Wavelength  
 de-Broglie formulated an equation relating the momentum (p) of the electron and the wavelength 

() associated with it, called de-Broglie wave equation.              

          h/mv=h  p where   h - is the planck’s constant.  

 

Relation between de-Broglie Wavelength and Energy 
Consider an electron with charge e, mass m and velocity v is under the influence of an electric potential V. 

The energy acquired by electron is given by,  

   
m

p
mveVE

22
1 2

2            (1) 



Here p is the momentum of the electron. From (1), we can write 

   mEmeVp 22          (2) 

The expression for de-Broglie wavelength is given by, 
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Wave Function 

 
 A variable quantity which characterizes de-Broglie waves is known as Wave function and is 

denoted by the symbol 𝛙.    

 The value of the wave function associated with a moving particle at a point (x, y, z) and at a time 

‘t’ gives the probability of finding the particle at that time and at that point. 

Physical significance of 𝛙  
 

 The wave function 𝛙 enables all possible information about the particle. 𝛙 is a complex 

quantity and has no direct physical meaning. It is only a mathematical tool in order to 

represent the variable physical quantities in quantum mechanics. 

  Born suggested that, the value of wave function associated with a moving particle at the 

position co-ordinates (x,y,z) in space, and at the time instant ‘t’ is related in finding the particle 

at certain location and certain period of time ‘t’. 

 If 𝛙 represents the probability of finding the particle, then it can have two cases. 

Case 1: certainty of its Presence: +ve probability 

Case 2: certainty of its absence: - ve probability, but –ve probability is meaningless. 

Hence the wave function 𝛙 is complex number and is of the form a+ib 

 Even though 𝛙 has no physical meaning, the square of its absolute magnitude |𝛙|2 gives a 

definite meaning and is obtained by multiplying the complex number with its complex 

conjugate then |𝛙|2 represents the probability density ‘P’ of locating the particle at a place at a 

given instant of time. And has real and positive solutions. 

𝛙 (𝐱,𝐲,𝐳,𝐭)=𝐚+𝐢𝐛 

𝛙∗(𝐱,𝐲,𝐳,𝐭)=𝐚−𝐢𝐛  

P= 𝛙𝛙∗=|𝛙|2=𝑎2+𝑏2 𝑎𝑠 𝑖2=−1 

where ‘P’ is called the probability density of the wave function. 

 If the particle is moving in a volume ‘V’, then the probability of finding the particle in a 



volume element dv, surrounding the point x,y,z and at instant ‘t’ is Pdv 

∫|𝛙|2𝑑𝑣=1 𝑖𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙e 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 

∫|𝛙2|𝑑𝑣 = 0 if particle does not exist 

This is called normalization condition. 

 

Schrödinger Wave Equations 
 Schrödinger describes the wave nature of a particle in mathematical form and is known as 

Schrödinger wave equation. Schrödinger wave equation plays the role of Newton’s laws and 

conservation of energy in classical mechanics i.e. it predicts the future behavior of a dynamic 

system. It is a wave equation in terms of wave function which predicts analytically and preciously 

the probability of events or outcomes. Schrödinger wave equation are of two types: 

  1. Time dependent wave equation and  

  2. Time independent wave equation.  

To obtain these two equations, Schrödinger connected the expression of de-Broglie wavelength into 

classical wave equation for a moving particle. The obtained equations are applicable for both 

microscopic and macroscopic particles.  

 
Schrödinger Time Dependent Wave Equation  
 
To explain the wave function, let us consider a particle of mass m moving along the positive x-direction 

having accurately known momentum p and total energy E. The position of the particle is completely 

undetermined. 

Let wave associated with such a particle be a plane, continuous harmonic wave travelling in the positive x-

direction. The wavelength of the wave is 
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 Let the plane wave be represented by a complex variable quantity 𝛙 called the wave function of the 
particle and is given by  
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Therefore, for a free particle wave equation becomes
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Differentiate equation (3) w.r.t. t, we get 
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Differentiate equation (3) w.r.t. x, we get 
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As total energy, E= Kinetic energy (K) +Potential energy (V) 
 



Now,       Kinetic Energy 
m

p
2

2

   

Equation (5) in terms of wave function 𝛙 can be written as, 
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Putting the values of E and p  from (4) and (5), we have 
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Equation (7) is called Schrödinger time dependent wave equation in one-dimension. The  
Schrödinger time dependent wave equation in three-dimensional form is written as, 
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Equation (10) contains time and hence is called time dependent Schrödinger wave equation. 
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 is called Hamiltonian and is represented by H. 

 
Schrödinger Time Independent Wave Equation  
 Again consider equation (3), the we have 

   
px

i
Et

i
pxEt

i

eAeAe 







)(

 

or    
Et

i

e 



 0             (11) 



Where    
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i
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Differentiate (11) partially w.r.t. t, we get 
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Differentiate (11) partially w.r.t. x twice, we get 

   
Et

i

e
xx











2
0

2

2

2 
            (13) 

Putting equations (11), (12) and (13) in equation (7) 
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This is time independent Schrödinger wave equation in one-dimension. 

In three-dimensional, it will be of the form as 
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Particle in one dimensional Box 
 

 The wave nature of a moving particle leads to some remarkable consequences when the 

particle is restricted to a certain region of space instead of being able to move freely i.e. 

when a particle bounces back and forth between the walls of a box. 

 The Schrodinger wave equation will be applied to study the motion of a particle in 1-D box 

to show how quantum numbers, discrete values of energy and zero point energy arise. 

 From wave point of view, a particle trapped in a box is like a standing wave in a 

string stretched between the box’s walls. 

 Consider a particle of mass ‘m’ moving freely along x- axis and is confined between x=0 

and x= L by infinitely two hard walls, so that the particle has no chance of penetrating them 

and bouncing back and forth between the walls of a 1-D box. 

 If the particle does not lose energy when it collides with such walls, then the total 

energy remains constant. 

 
 

 
 

      



 

 This box can be represented by a potential well of width ‘L’, where V is uniform inside the 

box throughout the length ‘L’ i.e V= 0 inside the box or convenience and with potential 

walls of infinite height at x=0 and x=L, so that the P.E. ‘V’ of a particle is infinitely high 

V=∞ on both sides of the box. 

Boundary Conditions 

The boundary conditions are 

V(𝑥)=0 ,𝜓(𝑥)=1  𝑤ℎ𝑒𝑛 0<𝑥<L        (1) 

V(𝑥)=∞ ,𝜓(𝑥)=0   𝑤ℎ𝑒𝑛 0≥𝑥≥L        (2) 

Where 𝜓(𝑥) is the wave function and it gives the probability of finding the particle inside the box. 

The Schrodinger wave equation for the particle in the potential well can be written as 
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As V=0 for a free particle, above equation reduces to,  
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In the simplest form equation (3) can be written as   
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Where k is the propagation constant and is give by
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The general solution of equation (4) is  
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Where A and B are arbitrary constants and value of these constants can be obtained by applying the 
boundary conditions. Substituting equation (1) in (6), we get 
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 Putting B=0 in (6) 
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Substituting equation (2) in (7), we get 
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As already B=0, and if A=0, there is no solution at all. Therefore, 
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where n= 1, 2, 3, 4,…….. . and so on. 
 
But   
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Because if n=0, k=0, E=0 everywhere inside the box and moving particle can not have zero energy. 
 
From (8)   
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Zero point energy 
 
The lowest energy of the particle is given by putting n= 1 in equation (9) i.e. 
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E0 = 0 is not allowed. The particle can never be at rest. The lowest energy is E1. This is the minimum 

energy that the particle will be having in its lowest state or ground state. This is also called Ground state 

energy or Zero point energy of the system. Other levels are called excited states. 

We can write  
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Wave Functions 
 
The wave functions 𝜓n  corresponding to En are called Eigen functions of the particle. The integer ‘n’ 

corresponding to energy En  are quantum number of the energy level En. Putting (8) in (7), 
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Normalization of Wave function 

According to the normalization condition, the total probability of finding the particle somewhere inside 

the box must be unity. 
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From  (11) and (12), 
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The second term of the integrand expression becomes zero at both the limits. So, 
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Hence, the normalized wave function is 
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The plots below show 𝜓n versus x and |

 
𝜓n |2 versus x for n=1, 2, and 3etc. Note that although 𝜓n can be 

positive or negative, |
 
𝜓n |2  is always positive.  

|
 
𝜓n |2 is zero at the boundaries, satisfying our boundary conditions. In addition, |

 
𝜓n |2 is zero at other 

points. The number of zero points depends on the quantum number n. Only certain wavelengths for 

particle are allowed. 

 

 
 
 
 
 

 

 

 

 


